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Abstract
This work was conducted under the supervision of Professor
Mark Hempstead as part of an independent study in hardware
accelerators. This paper summarizes my research on hardware
accelerators and details my work on the development of a testbed
architecture to support multi-accelerator applications. Computer
architects are preparing to confront a recent limitation on the
number of transistors on chip that can be used at any given time.
This “utilization wall” will limit the extent to which computers
can benefit from increasing transistor counts. Specializing the
transistors on chip is one solution which seems to be gaining
traction among the research community and in industry. As re-
searchers investigate this option, they have begun to develop new
accelerator-rich architectures (ARAs) to handle the challenges
posed by specialization. For researchers to conclusively evalu-
ate and compare these architectures, they will need a catalog of
applications which use many accelerators in taxing ways. This
work focuses on the design of an architecture upon which such
applications can be built and architectural choices can be eval-
uated. The architecture is developed for the Zynq-7000 line of
systems-on-chip and serves as a baseline architecture for ARA
research.

1 Introduction
The Motivation for Specialization It used to be that chip

power consumption would remain constant as transistors grew
smaller due to a principle known as Dennard scaling [6]. Start-
ing around 2006, Dennard scaling began to fail due to the fact
that sub-micron sized transistors are more susceptible to leakage
current and other non-ideal phenomena [12]. This means that
placing more transistors on chip incurs greater power consump-
tion, yet modern computers have reached a limit on the amount
of power they can consume while still being kept cool. For ex-
ample, the power consumption of Intel CPUs plateaued back in
2006 [8]. To continue increasing the number of transistors on
chip and stay within power budget, designers will have to selec-
tively under-clock or turn off portions of the chip. Thus, as the
number of transistors on chip grows, a smaller and smaller per-
centage of them will be usable at any given time. This utilization
wall, as it is called by Venkatesh et al. [17], threatens to limit the
extent to which computers can benefit from increasing transistor
counts in the future.

Several solutions to the utilization wall have been proposed,
including shrinking the number of transistors on chip, “dim-
ming” regions of the chip, developing new, more efficient tran-
sistor technologies, and specializing groups of transistors.

The first of these, shrinking transistor counts, clearly means
the end of Moore’s Law scaling. This has been called the “most
pessimistic” solution to the problem [16], and understandably,
many in industry are hesitant to make such a big concession.

“Dimming” technologies make the transistors on chip more
energy-efficient, thereby increasing the number of transistors
that can be used while staying within power budgets. How-
ever, these techniques often cause a decrease in performance.
Dynamic voltage and frequency scaling (DVFS) is a common
technique to reduce the power consumption of transistors when
high performance is not required. Some work has been done to
make DVFS even more effective for modern architectures [9].
Other work achieves energy efficiency by making transistors
more reusable. For example, DySER from the University of
Wisconsin-Madison is an element of the processor pipeline that
can be reconfigured to implement one of multiple functions [7].
Because DySER is reconfigurable, energy is only expended on
the data path that is currently configured. This saves energy
compared to architectures where idle data paths still consume
power.

The third approach—the development of new transistor
tech—addresses the failure of Dennard scaling by moving away
from CMOS. Some of the work in this field includes tunnel
field-effect transistors (TFETs) [14] which use quantum tun-
neling to implement a switch, and nano electro-mechanical
switches (NEMS) [2] which exploit the power efficiency of
nano-mechanical technology.

Lastly, specialization addresses power limitations by spread-
ing computation across an array of specialized, more efficient
blocks of transistors, called accelerators. Rather than have a
monolithic processor do the majority of computation and offload
a small portion to specialized hardware (as is the norm today),
the vision for specialization in the future has computation bounc-
ing between many specialized regions of the chip [16]. Because
there are more transistors on chip than can be used at any one
time, area can be “spent” on accelerators specialized for cer-
tain computations. These accelerators use fewer transistors than
a general-purpose processor to implement specific functional-
ity. Thus, on a fully specialized system, the computer will use a



minimal number of transistors for all tasks, thereby maintaining
performance gains despite the utilization wall.

Accelerators are already being adopted in industry. The Inter-
national Technology Roadmap for Semiconductors (ITRS) re-
leased a report in 2007 which predicted that systems-on-chip
will contain nearly 1500 accelerators by the year 2022 [1].
Today, accelerators can be found in common devices like the
iPhone [15] and the PlayStation 3 [10]. Many look to special-
ization as a promising answer to the utilization wall, and clearly
the approach is gaining traction, but for accelerators to solve the
problem entirely, they will need to become even more pervasive
and numerous in future architectures. Integrating accelerators in
greater numbers and moving away from large, general-purpose
processors requires significant work in the development of new
architectures.

The Challenges for Accelerator-Rich Architectures The
shift toward specialized computation brings about new chal-
lenges for architectures in areas such as on-chip communication,
memory organization, resource sharing between cores, and oth-
ers.

As computation becomes less centralized, it will be impor-
tant for accelerators to communicate with one another without
the assistance of a central controller (which would become a
bottleneck). This is also known as streaming. To stream data
between accelerators, they must all agree upon a common inter-
face. Architectures have been developed to help with this. They
use different structures like FIFOs [11], DMA engines [3, 10],
or shared L1 caches [5] to interface the accelerators with each
other. These architectures all implement streaming slightly dif-
ferently, and it would be interesting to know which implementa-
tion performs better under which circumstances.

Architectural researchers are also concerned with the orga-
nization of memory in many-accelerator systems. Accelerators
are frequently designed with their own private memories, called
scratchpads, as this ensures fast access to the data they need. The
Cell processor is one example of an accelerator-rich architecture
in which the accelerators own private memories [10]. Some re-
searchers have argued that organizing memory in private blocks
is wasteful when the number of accelerators on chip is large, and
that instead accelerators ought to share memory [11, 4, 5].

Yet another concern is how a finite number of accelerators
will be shared among cores of chip multiprocessors (CMPs).
These architectures approach the issue in different ways, such as
by approximating the wait time to use a busy accelerator [3], or
by simply having as many copies of each accelerator as there are
cores [18]. This last option becomes less feasible as the number
of unique accelerators grows larger.

Clearly, specialization is not without its challenges. Even so,
the research community is evidently hard at work developing
solutions to these issues.

The Value of Accelerator-Rich Applications As we figure
out how to beat the utilization wall, it will be necessary to com-
pare and contrast architecture designs to determine which per-
form best for a particular metric. To do this, one can compare
the performance of each when running an application that uses
many accelerators.

There are a few examples of applications which employ hard-
ware accelerators to meet requirements they otherwise could
not running in software alone. The RoboBee, an insect-
scale, flapping-wing robot, uses hardware accelerators to meet
stringent energy constraints and real-time performance de-
mands [21]. The Bee uses accelerators in ways which would
challenge accelerator-rich architectures. For example, the Bee
makes heavy use of accelerator streaming for image processing.
In addition, the researchers behind the Accelerator Store archi-
tecture present an application to test their own system: an em-
bedded security device which uses accelerators for JPEG com-
pression, AES encryption, and Fast Fourier Transform (FFT)
calculation [11]. They use the application to demonstrate how
performance is affected when sharing memory among acceler-
ators. Assessing how these applications and others like them
perform on a range of different architectures would provide
valuable insight into the trade-offs inherent in certain designs.
This motivates the development of more accelerator-rich appli-
cations.

Requirements for the Testbed Architecture A prerequisite
to the development of accelerator-rich applications is the archi-
tecture which supports them. Because the main goal of devel-
oping these applications is to test them on a variety of architec-
tures, one should first focus on developing an architecture which
is easily configurable. This will allow researchers to investigate
different architectural parameters with ease.

In the Tufts Computer Architecture Lab specifically, PhD
candidates Parnian Mokri and David Werner are working on
breaking down an application into accelerators of optimal gran-
ularity, and designing new memory interconnect for accelerated
systems, respectively. To facilitate Parnian’s work, the archi-
tecture must allow the user to customize which accelerators are
incorporated in the system. To facilitate David’s work, the ac-
celerator interconnect must be modular so that it can be replaced
with a custom solution.

2 Technical Discussion
In this section, I will discuss the details of my testbed
architecture. The block diagram of the architecture
is shown in Appendix A. The architecture includes
several key components:

• A general-purpose processor,

• a DMA engine,

• several AXI-Bus crossbars,

• and three Fast Fourier Transform (FFT) accelerators.

Three was the maximum number of FFT accelerators that
could fit on the selected board’s FPGA given the available DSP
resources. Only one type of accelerator was integrated because
of time constraints—given more time, I would have included a
diverse group of accelerators. Regardless, with these building
blocks I was able to construct and evaluate an architecture upon
which applications can be built and accelerator research can be
conducted.



Hardware Requirements This architecture is intended to
be instantiated on a Zynq-7000 All Programmable System-on-
Chip [19]. These SoCs contain a general-purpose ARM proces-
sor and reconfigurable FPGA fabric. A ZedBoard [20] with a
Zynq-7020 was used to implement this infrastructure. Depend-
ing upon the available onboard FPGA resources, the infrastruc-
ture may be able to support more or fewer accelerators.

The FFT Accelerator The FFT accelerator is derived from
the strided FFT algorithm found in MachSuite [13], a diverse
suite of workloads that are well-suited for implementation in
hardware. The algorithm computes a 1024-point, complex FFT
using the Cooley-Tukey “butterfly” method. The C code from
MachSuite was synthesized to RTL using Vivado HLS, a high-
level synthesis tool. Directives were used to specify a 32-bit AXI
interface for the synthesized hardware. It takes 4 input arrays:
the real and imaginary parts of the input, and the real and imagi-
nary twiddle bits. The accelerator uses local scratchpad memory
to do computation in-place, overwriting the first two arrays with
the FFT output.

Modular Interconnect To facilitate researching on-chip
communication and data transfer, the interconnect between
the system’s accelerators has been isolated and labeled
MODULAR INTERCONNECT. The block diagram has been
designed to allow this interconnect to be easily swapped out with
a custom solution. For now, this block is simply an AXI cross-
bar which forces accelerators to contend for access to the bus.
This leaves much room for improvement, as accelerators often
require high memory bandwidth.

Top-Level Architecture I used Vivado v2015.4 to design the
block diagram of the top-level architecture. The Zynq Process-
ing System (Zynq PS) is the general-purpose processor. It is
connected via an AXI crossbar to the AXI Central DMA engine
(CDMA) and also to the Modular Interconnect which is home
to the accelerators. One important design decision was to estab-
lish a hierarchy in the AXI bus. In this hierarchy, the Zynq PS
is a master to the Modular Interconnect and the DMA, which
in turn is a master to the Zynq PS’s main memory and the Mod-
ular Interconnect. As the only master to the CDMA, the Zynq
PS must handle all DMA transfers. Because the CDMA and
Zynq PS are both masters to the Modular Interconnect, either
one can communicate with the accelerators in the system. With
this arrangement, one can compare the CDMA and Zynq PS
in terms of data transfer rate to and from the accelerators. The
Zynq PS can also send control signals to the accelerators di-
rectly, rather than be forced to do so via DMA. Interrupt signals
from the FFTs and the CDMA are concatenated and wired to
the IRQ port of the Zynq PS. This allows for the possibility of
asynchronous computation and data transfer.

3 Evaluation
It is important to validate my design to ensure its functionality.
Here I discuss my test procedure, my findings, and my conclu-
sions on how well my design meets the requirements. The archi-
tecture evaluated here is shown in Appendix A.

static void compare_results(double real_hw[FFT_SIZE], double
real_sw[FFT_SIZE], double img_hw[FFT_SIZE], double

img_sw[FFT_SIZE]) {
int i;
for(i=0; i<FFT_SIZE; i++){
if(real_hw[i] != real_sw[i] or img_hw[i] != img_sw[i]) {
xil_printf("ERROR: Different results at bin %d\n", i);

}
}

}

Listing 1: FFT Validation Function

3.1 Validating the FFT Accelerator
After synthesizing the strided FFT from MachSuite [13] in Vi-
vado HLS, it is important to verify that the accelerator actually
computes an FFT correctly. To proceed further, I must verify
that the FFT accelerator’s results exactly match those of the FFT
in software. My results show that these expectations are met—
the FFT hardware accelerators compute exactly the same results
as the FFT in software.

3.1.1 Methodology
The results of each FFT accelerator were compared to the results
of the MachSuite C code to check that the accelerator works
correctly. The MachSuite C code was copied and pasted into
the Xilinx SDK where it was compiled for the Zynq processor.
The Zynq processor then computed seven FFTs using the same
inputs: one in software; the other six on each of the three hard-
ware accelerator instances, both using a DMA engine and not.
Results from each were checked against results from software
using the function in Listing 1. The results of the hardware FFT
should be passed as arguments real hw and img hw, and the
results of the software FFT should be passed as real sw and
img sw.

3.1.2 Results
No differences arose between the results of the software FFT and
any of the hardware-accelerated FFTs. This means that all three
hardware FFTs correctly implement the strided FFT algorithm.

3.2 Examining Accelerator-Rich System Perfor-
mance Relative to Software

With the previous test, I showed that the FFTs compute the cor-
rect results. With this test, I demonstrate the usefulness of the
DMA engine and clock scaling in improving the performance of
the FFT in hardware versus in software.

3.2.1 Methodology
The FFT was re-synthesized using Vivado HLS with a target
clock frequency of 120MHz. 120MHz was selected because
it is the maximum frequency at which the DMA engine can
operate on the Zedboard. The timing portion of the FFT C-
synthesis report is printed in Figure 1. The block diagram
shown in Appendix A was synthesized with the peripheral clock
(FCLK CLK0 from the Zynq processor) set to 100MHz and then
120MHz. At each frequency, execution time was recorded for
the FFT in software, in hardware using the DMA engine, and in



Figure 1: Timing characteristics taken from the C Synthesis Report for
MachSuite’s Strided FFT, generated by Vivado HLS. Targeting a clock
frequency of 120MHz.

XTime tStart, tEnd;
XTime_GetTime(&tStart);
// Region of interest goes here
XTime_GetTime(&tEnd);
int t = (tEnd - tStart);
xil_printf("Region of interest took %d timer cycles.\n",t);

Listing 2: XTime example

hardware not using the DMA engine. The XTime library from
Xilinx was used to time sections of code, as shown in Listing 2.

The number of timer cycles spent computing each criti-
cal section was recorded. Dividing by the timer clock rate
yields the time in seconds. The following critical sections were
selected for timing:

• Sending inputs to the FFT

• Computation of the FFT

• Retrieving results from the FFT

The software does not need to spend time sending or retriev-
ing data since it operates on arrays already available to it in main
memory. The FFT accelerator, on the other hand, requires data
to be copied to and from its scratchpad memory. The DMA en-
gine is used to move inputs and outputs between main memory
and the FFT’s scratchpad. When not using the DMA, the Zynq
processor must manually copy the data. In all cases, the hard-
ware implementation is synchronous, meaning the Zynq proces-
sor initiates each input/output copy one at a time and then must
wait while each transfer takes place.

3.2.2 Results
Figures 2 and 3 show the time spent executing the FFT in soft-
ware versus each step in hardware at two different clock rates
and with and without a DMA engine.

Focusing on the accelerators, one will notice that using the
DMA drastically speeds up execution. On average, the DMA
speeds up all data transfer by approximately 16x as compared to
the processor manually copying data to the accelerator. Unsur-
prisingly, the time spent computing the FFT is unaffected by the
use of a DMA engine. Figure 3 gives a more close-up view of
how the hardware accelerator with DMA compares to software.

When increasing the clock frequency of the FFT accelerator,
DMA engine, and AXI interconnect from 100MHz to 120MHz,
one can see that every step of the hardware implementation
speeds up, whether using the DMA or not. This is because the
DMA and the Zynq processor can each only transfer data as fast
as the interconnect will allow.

Finally, it is important to note that the software implementa-
tion is faster than hardware in all cases in terms of total execu-

Figure 2: Time breakdown of an FFT done in software versus in hard-
ware, showing all implementations (with/without a DMA engine, and
with peripherals clocked at 100MHz and 120MHz). Each critical step
is highlighted in a different color. Copying of input operands is high-
lighted in shades of gray, the actual computation in shades of red, and
copying back results in shades of yellow.

Figure 3: Close-up view of execution time for the hardware implemen-
tations with a DMA engine.



tion time. However, this includes the time spent copying data
to and from the FFT accelerator. In Figure 3, one can see that
at 120MHz, the actual computation (shown in red) is completed
faster in hardware than in software. The synchronous data trans-
fer which comes before and after computation lengthens execu-
tion time to the point where there is no speedup over the software
implementation. Transferring data asynchronously could amor-
tize this overhead by allowing the Zynq processor to do other
useful work while data is moved by a DMA engine.

4 Project Execution Evaluation
My original task was to develop an application that uses many
accelerators in a way that highlights their varied interactions in a
many-accelerator architecture. Along the way, I discovered that
designing the underlying architecture itself would take a signif-
icant amount of time and effort. I had to make decisions about
how data would be moved between accelerators, how accelera-
tors would interface with each other and the processor, how com-
munication could be made asynchronous, and ultimately how
to make my infrastructure most useful to other researchers in
the Tufts Computer Architecture Lab. To make these decisions
and implement them, I needed to learn a number of programs—
such as the Xilinx SDK, Vivado, and Vivado HLS—and also re-
search hardware accelerators, accelerator-rich architectures and
applications, and general principles of architecture design. My
work throughout the semester is catalogued in an online blog
that can be found on the TCAL wiki, or at the following URL:
http://bit.ly/1R0IMJA

Ultimately, I was unable to begin work on the application, but
I have accomplished an important piece of this project by devel-
oping and validating the underlying architecture. To date, I have
validated my design, highlighted areas for improvement and fur-
ther development, and documented my work so that someone
else can easily pick up where I have left off.

5 Conclusions
I have presented the need for applications that use multiple ac-
celerators in varied data paths. With this work, I have success-
fully developed an infrastructure featuring a Zynq-7000 SoC
processor which manages many accelerators. I have also demon-
strated the extent to which a DMA engine can speed up acceler-
ator workloads relative to software.

6 Future Work
The next step would be to build an application on top of this
infrastructure. Aspects of the infrastructure could be tweaked
to determine how various design decisions impact performance.
Such tweaks could be making data transfer to and from the accel-
erators asynchronous, enabling streaming between accelerators,
customizing the modular accelerator interconnect, and sharing
the accelerators between the two cores of the Zynq PS.

http://bit.ly/1R0IMJA
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